Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.724
Filtrar
1.
Nat Commun ; 15(1): 3199, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615009

RESUMO

The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.


Assuntos
Aldeído Liases , Frutose-Bifosfato Aldolase , Humanos , Animais , Camundongos , Frutose-Bifosfato Aldolase/genética , Catálise , Biblioteca Gênica , Glicina Hidroximetiltransferase/genética , Carnitina , Mamíferos
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612566

RESUMO

Rubisco large-subunit methyltransferase (LSMT), a SET-domain protein lysine methyltransferase, catalyzes the formation of trimethyl-lysine in the large subunit of Rubisco or in fructose-1,6-bisphosphate aldolases (FBAs). Rubisco and FBAs are both vital proteins involved in CO2 fixation in chloroplasts; however, the physiological effect of their trimethylation remains unknown. In Nannochloropsis oceanica, a homolog of LSMT (NoLSMT) is found. Phylogenetic analysis indicates that NoLSMT and other algae LSMTs are clustered in a basal position, suggesting that algal species are the origin of LSMT. As NoLSMT lacks the His-Ala/ProTrp triad, it is predicted to have FBAs as its substrate instead of Rubisco. The 18-20% reduced abundance of FBA methylation in NoLSMT-defective mutants further confirms this observation. Moreover, this gene (nolsmt) can be induced by low-CO2 conditions. Intriguingly, NoLSMT-knockout N. oceanica mutants exhibit a 9.7-13.8% increase in dry weight and enhanced growth, which is attributed to the alleviation of photoinhibition under high-light stress. This suggests that the elimination of FBA trimethylation facilitates carbon fixation under high-light stress conditions. These findings have implications in engineering carbon fixation to improve microalgae biomass production.


Assuntos
Aldeído Liases , Lisina , Ribulose-Bifosfato Carboxilase/genética , Biomassa , Dióxido de Carbono , Filogenia , Frutose-Bifosfato Aldolase , Histona-Lisina N-Metiltransferase , Cloroplastos/genética
3.
Sci Rep ; 14(1): 6488, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499636

RESUMO

Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract and a leading cause of cancer-related death worldwide. Since many CRC patients are diagnosed already in the advanced stage, and traditional chemoradiotherapy is prone to drug resistance, it is important to find new therapeutic targets. In this study, the expression levels of ALDOA and p-AKT were detected in cancer tissues and paired normal tissues, and it was found that they were significantly increased in CRC tissues, and their high expression indicated poor prognosis. Moreover, a positive correlation between the expression of ALDOA and p-AKT was found in CRC tissues and paired normal tissues. In addition, the Kaplan-Meier analysis revealed that the group with both negative of ALDOA/p-AKT expression had longer five-year survival rates compared with the other group. Besides, the group with both high expression of ALDOA/p-AKT had a worse prognosis compared with the other group. Based on the expression of ALDOA and p-AKT in tumor tissues, we can effectively distinguish tumor tissues from normal tissues through cluster analysis. Furthermore, we constructed nomograms to predict 3-year and 5-year overall survival, showing that the expression of ALDOA/p-AKT plays a crucial role in predicting the prognosis of CRC patients. Therefore, ALDOA/p-AKT may act as a crucial role in CRC, which may provide new horizons for targeted therapies for CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Humanos , Prognóstico , Estimativa de Kaplan-Meier , Neoplasias Colorretais/metabolismo , Frutose-Bifosfato Aldolase/metabolismo
4.
Funct Integr Genomics ; 24(2): 53, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453820

RESUMO

Hepatocellular carcinoma (HCC) is one of the malignancies with the worst prognosis worldwide, in the occurrence and development of which glycolysis plays a central role. This study uncovered a mechanism by which ZNF692 regulates ALDOA-dependent glycolysis in HCC cells. RT-qPCR and western blotting were used to detect the expression of ZNF692, KAT5, and ALDOA in HCC cell lines and a normal liver cell line. The influences of transfection-induced alterations in the expression of ZNF692, KAT5, and ALDOA on the functions of HepG2 cells were detected by performing MTT, flow cytometry, Transwell, cell scratch, and colony formation assays, and the levels of glucose and lactate were determined using assay kits. ChIP and luciferase reporter assays were conducted to validate the binding of ZNF692 to the KAT5 promoter, and co-IP assays to detect the interaction between KAT5 and ALDOA and the acetylation of ALDOA. ZNF692, KAT5, and ALDOA were highly expressed in human HCC samples and cell lines, and their expression levels were positively correlated in HCC. ZNF692, ALDOA, or KAT5 knockdown inhibited glycolysis, proliferation, invasion, and migration and promoted apoptosis in HepG2 cells. ZNF692 bound to the KAT5 promoter and promoted its activity. ALDOA acetylation levels were elevated in HCC cell lines. KAT5 bound to ALDOA and catalyzed ALDOA acetylation. ALDOA or KAT5 overexpression in the same time of ZNF692 knockdown, compared to ZNF692 knockdown only, stimulated glycolysis, proliferation, invasion, and migration and reduced apoptosis in HepG2 cells. ZNF692 promotes the acetylation modification and protein expression of ALDOA by catalyzing KAT5 transcription, thereby accelerating glycolysis to drive HCC cell development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Células Hep G2 , Glicólise , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo
5.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396648

RESUMO

The employment of 2-deoxyribose-5-phosphate aldolase (DERA) stands as a prevalent biocatalytic route for synthesizing statin side chains. The main problem with this pathway is the low stability of the enzyme. In this study, mesocellular silica foam (MCF) with different pore sizes was used as a carrier for the covalent immobilization of DERA. Different functionalizing and activating agents were tested and kinetic modeling was subsequently performed. The use of succinic anhydride as an activating agent resulted in an enzyme hyperactivation of approx. 140%, and the stability almost doubled compared to that of the free enzyme. It was also shown that the pore size of MCF has a decisive influence on the stability of the DERA enzyme.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Dióxido de Silício/química , Aldeído Liases/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Biocatálise
6.
ACS Synth Biol ; 13(3): 888-900, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359048

RESUMO

Methanol has gained substantial attention as a substrate for biomanufacturing due to plentiful stocks and nonreliance on agriculture, and it can be sourced renewably. However, due to inevitable complexities in cell metabolism, microbial methanol conversion requires further improvement before industrial applicability. Here, we present a novel, parallel strategy using artificial cells to provide a simplified and well-defined environment for methanol utilization as artificial methylotrophic cells. We compartmentalized a methanol-utilizing enzyme cascade, including NAD-dependent methanol dehydrogenase (Mdh) and pyruvate-dependent aldolase (KHB aldolase), in cell-sized lipid vesicles using the inverted emulsion method. The reduction of cofactor NAD+ to NADH was used to quantify the conversion of methanol within individual artificial methylotrophic cells via flow cytometry. Compartmentalization of the reaction cascade in liposomes led to a 4-fold higher NADH production compared with bulk enzyme experiments, and the incorporation of KHB aldolase facilitated another 2-fold increase above the Mdh-only reaction. This methanol-utilizing platform can serve as an alternative route to speed up methanol biological conversion, eventually shifting sugar-based bioproduction toward a sustainable methanol bioeconomy.


Assuntos
Células Artificiais , Metanol , Metanol/metabolismo , NAD/metabolismo , Frutose-Bifosfato Aldolase , Aldeído Liases/metabolismo
7.
J Lipid Res ; 65(3): 100525, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38417553

RESUMO

The availability of genome-wide transcriptomic and proteomic datasets is ever-increasing and often not used beyond initial publication. Here, we applied module-based coexpression network analysis to a comprehensive catalog of 35 mouse genome-wide liver expression datasets (encompassing more than 3800 mice) with the goal of identifying and validating unknown genes involved in cholesterol metabolism. From these 35 datasets, we identified a conserved module of genes enriched with cholesterol biosynthetic genes. Using a systematic approach across the 35 datasets, we identified three genes (Rdh11, Echdc1, and Aldoc) with no known role in cholesterol metabolism. We then performed functional validation studies and show that each gene is capable of regulating cholesterol metabolism. For the glycolytic gene, Aldoc, we demonstrate that it contributes to de novo cholesterol biosynthesis and regulates cholesterol and triglyceride levels in mice. As Aldoc is located within a genome-wide significant genome-wide association studies locus for human plasma cholesterol levels, our studies establish Aldoc as a causal gene within this locus. Through our work, we develop a framework for leveraging mouse genome-wide liver datasets for identifying and validating genes involved in cholesterol metabolism.


Assuntos
Frutose-Bifosfato Aldolase , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Animais , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Proteômica , Colesterol/metabolismo , Fígado/metabolismo
8.
Cell Commun Signal ; 22(1): 75, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287374

RESUMO

BACKGROUND: Parkinson's disease (PD), a chronic and severe neurodegenerative disease, is pathologically characterized by the selective loss of nigrostriatal dopaminergic neurons. Dopamine (DA), the neurotransmitter produced by dopaminergic neurons, and its metabolites can covalently modify proteins, and dysregulation of this process has been implicated in neuronal loss in PD. However, much remains unknown about the protein targets. METHODS: In the present work, we designed and synthesized a dopamine probe (DA-P) to screen and identify the potential protein targets of DA using activity-based protein profiling (ABPP) technology in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In situ pull-down assays, cellular thermal shift assays (CETSAs) and immunofluorescence were performed to confirm the DA modifications on these hits. To investigate the effects of DA modifications, we measured the enzymatic activities of these target proteins, evaluated glycolytic stress and mitochondrial respiration by Seahorse tests, and systematically analyzed the changes in metabolites with unbiased LC-MS/MS-based non-targeted metabolomics profiling. RESULTS: We successfully identified three glycolytic proteins, aldolase A, α-enolase and pyruvate kinase M2 (PKM2), as the binding partners of DA. DA bound to Glu166 of α-enolase, Cys49 and Cys424 of PKM2, and Lys230 of aldolase A, inhibiting the enzymatic activities of α-enolase and PKM2 and thereby impairing ATP synthesis, resulting in mitochondrial dysfunction. CONCLUSIONS: Recent research has revealed that enhancing glycolysis can offer protection against PD. The present study identified that the glycolytic pathway is vulnerable to disruption by DA, suggesting a promising avenue for potential therapeutic interventions. Safeguarding glycolysis against DA-related disruption could be a potential therapeutic intervention for PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Dopamina/uso terapêutico , Frutose-Bifosfato Aldolase/uso terapêutico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas , Fosfopiruvato Hidratase
9.
Biochem Biophys Res Commun ; 696: 149489, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38244313

RESUMO

Lung cancer has a high incidence rate and requires more effective treatment strategies and drug options for clinical patients. EGFR is a common genetic alteration event in lung cancer that affects patient survival and drug strategy. Our study discovered aberrant aldolase A (ALDOA) expression and dysfunction in lung cancer patients with EGFR mutations. In addition to investigating relevant metabolic processes like glucose uptake, lactate production, and ATPase activity, we examined multi-omics profiles (transcriptomics, proteomics, and pull-down assays). It was observed that phosphodiesterase 3A (PDE3A) enzyme and ALDOA exhibit correlation, and furthermore, they impact M2 macrophage polarization through ß-catenin and downstream ID3. In addition to demonstrating the aforementioned mechanism of action, our experiments discovered that the PDE3 inhibitor trequinsin has a substantial impact on lung cancer cell lines with EGFR mutants. The trequinsin medication was found to decrease the M2 macrophage polarization status and several cancer phenotypes, in addition to transduction. These findings have potential prognostic and therapeutic applications for clinical patients with EGFR mutation and lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Frutose-Bifosfato Aldolase/genética , beta Catenina/genética , beta Catenina/metabolismo , Transdução de Sinais/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Linhagem Celular Tumoral , Mutação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Inibidoras de Diferenciação/genética
10.
J Nucl Med ; 65(3): 475-480, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272705

RESUMO

Fructose metabolism has been implicated in various diseases, including metabolic disorders, neurodegenerative disorders, cardiac disorders, and cancer. However, the limited availability of a quantitative imaging radiotracer has hindered its exploration in pathology and diagnostic imaging. Methods: We adopted a molecular design strategy based on the catalytic mechanism of aldolase, a key enzyme in fructolysis. We successfully synthesized a radiodeoxyfluorinated fructose analog, [18F]4-fluoro-4-deoxyfructose ([18F]4-FDF), in high molar activity. Results: Through heavy isotope tracing by mass spectrometry, we demonstrated that C4-deoxyfluorination of fructose led to effective trapping as fluorodeoxysorbitol and fluorodeoxyfructose-1-phosphate in vitro, unlike C1- and C6-fluorinated analogs that resulted in fluorolactate accumulation. This observation was consistent in vivo, where [18F]6-fluoro-6-deoxyfructose displayed substantial bone uptake due to metabolic processing whereas [18F]4-FDF did not. Importantly, [18F]4-FDF exhibited low uptake in healthy brain and heart tissues, known for their high glycolytic activity and background levels of [18F]FDG uptake. [18F]4-FDF PET/CT allowed for sensitive mapping of neuro- and cardioinflammatory responses to systemic lipopolysaccharide administration. Conclusion: Our study highlights the significance of aldolase-guided C4 radiodeoxyfluorination of fructose in enabling effective radiotracer trapping, overcoming limitations of C1 and C6 radioanalogs toward a clinically viable tool for imaging fructolysis in highly glycolytic tissues.


Assuntos
Frutose-Bifosfato Aldolase , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Aldeído Liases , Glicólise , Frutose
11.
Microb Biotechnol ; 17(1): e14270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37154793

RESUMO

Mycobacterial mutants blocked in ring degradation constructed to achieve C19 synthons production, also accumulate by-products such as C22 intermediates throughout an alternative pathway reducing the production yields and complicating the downstream purification processing of final products. In this work, we have identified the MSMEG_6561 gene, encoding an aldolase responsible for the transformation of 22-hydroxy-3-oxo-cholest-4-ene-24-carboxyl-CoA (22-OH-BCN-CoA) into the 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) precursor (20S)-3-oxopregn-4-ene-20-carboxaldehyde (3-OPA). The deletion of this gene increases the production yield of the C-19 steroidal synthon 4-androstene-3,17-dione (AD) from natural sterols, avoiding the production of 4-HBC as by-product and the drawbacks in the AD purification. The molar yield of AD production using the MS6039-5941-6561 triple mutant strain was checked in flasks and bioreactor improving very significantly compared with the previously described MS6039-5941 strain.


Assuntos
Frutose-Bifosfato Aldolase , Esteróis , Esteróis/metabolismo , Colestenonas , Aldeído Liases
12.
Reprod Biol ; 24(1): 100845, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159424

RESUMO

Hepatitis B virus (HBV) infection is associated with male infertility. The mechanism includes an increase in chromosomal instability in sperm, which has an adverse effect on sperm viability and function. Sertoli cells (SCs) are vital in spermatogenesis because they use glycolysis to provide energy to germ cells and themselves. HBV infection impairs sperm function. However, whether HBV infection disrupts energy metabolism in SCs remains unclear. This study aimed to determine the role of serum exosomes of HBV-infected patients in SC viability and glycolysis. Serum exosomes were obtained from 30 patients with (HBV+_exo) or without (HBV-_exo) HBV infection using high-speed centrifugation and identified by transmission electron microscopy and western blot analysis. Cell viability is determined by CCK-8 assay. Glycolysis is determined by detecting extracellular acidification rate and ATP levels. miR-122-5p expression levels are detected by quantitative RT-PCR, and a dual-luciferase gene reporter assay confirms the downstream target gene of miR-122-5p. Protein expression is determined by western blot analysis. The results show that HBV+ _exo inhibited cell viability, extracellular acidification rate, and ATP production of SCs. miR-122-5p is highly expressed in HBV+ _exo compared with that in HBV-_exo. Furthermore, HBV+ _exo is efficiently taken up by SCs, whereas miR-122-5p is efficiently transported to SCs. miR-122-5p overexpression downregulates ALDOA expression and inhibits SC viability and glycolysis. However, ALDOA overexpression reverses the effects of miR-122-5p and HBV+ _exo on SC viability and glycolysis. HBV+ _exo may deliver miR-122-5p to target ALDOA and inhibit SC viability and glycolysis, thus providing new therapeutic ideas for treating HBV-associated male infertility.


Assuntos
Exossomos , Infertilidade Masculina , MicroRNAs , Humanos , Masculino , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Células de Sertoli/metabolismo , Sêmen/metabolismo , Glicólise , Infertilidade Masculina/metabolismo , Trifosfato de Adenosina/metabolismo , Frutose-Bifosfato Aldolase/metabolismo
13.
Biochem Biophys Res Commun ; 695: 149440, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157628

RESUMO

l-threonate is the metabolite of vitamin C, while d-erythronate is the metabolite of N-acetyl-d-glucosamine, the nutritional supplement for joint health. They are widely distributed in the environment and human biofluids. Nevertheless, the catabolisms of l-threonate and d-erythronate are sparsely reported. Here we explored the functional diversity of an acid sugar kinase family (Pfam families PF07005-PF17042), and discovered a novel 2-oxo-tetronate kinase. The conserved genome neighborhood of the 2-oxo-tetronate kinase encodes members of class-II fructose-bisphosphate aldolase family (F_bP_aldolase, PF01116) and a dehydrogenase family (PF03446-PF14833). Instructed by this analysis, we experimentally verified that these enzymes are capable of degrading l-threonate into dihydroxyacetone phosphate (DHAP) in Arthrobacter sp. ZBG10, Clostridium scindens ATCC 35704, and Pseudonocardia dioxanivorans ATCC 55486. Meanwhile, a convergent catabolic pathway for d-erythronate was characterized in P. dioxanivorans ATCC 55486. Moreover, the phylogenetic distribution analysis indicates that the biological range of the identified l-threonate and d-erythronate catabolic pathways appears to extend mostly to members of the Actinomycetota, Cyanobacteriota, Bacillota, Pseudomonadota, and Bacteroidota phyla.


Assuntos
Bactérias , Butiratos , Frutose-Bifosfato Aldolase , Humanos , Filogenia , Bactérias/metabolismo , Aldeído Liases , Fosfotransferases
14.
Nat Commun ; 14(1): 8490, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123535

RESUMO

One-carbon (C1) substrates, such as methanol or formate, are attractive feedstocks for circular bioeconomy. These substrates are typically converted into formaldehyde, serving as the entry point into metabolism. Here, we design an erythrulose monophosphate (EuMP) cycle for formaldehyde assimilation, leveraging a promiscuous dihydroxyacetone phosphate dependent aldolase as key enzyme. In silico modeling reveals that the cycle is highly energy-efficient, holding the potential for high bioproduct yields. Dissecting the EuMP into four modules, we use a stepwise strategy to demonstrate in vivo feasibility of the modules in E. coli sensor strains with sarcosine as formaldehyde source. From adaptive laboratory evolution for module integration, we identify key mutations enabling the accommodation of the EuMP reactions with endogenous metabolism. Overall, our study demonstrates the proof-of-concept for a highly efficient, new-to-nature formaldehyde assimilation pathway, opening a way for the development of a methylotrophic platform for a C1-fueled bioeconomy in the future.


Assuntos
Escherichia coli , Metanol , Escherichia coli/genética , Escherichia coli/metabolismo , Metanol/metabolismo , Formaldeído/metabolismo , Sarcosina , Frutose-Bifosfato Aldolase/metabolismo , Engenharia Metabólica
15.
J Transl Med ; 21(1): 838, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990271

RESUMO

BACKGROUND: LIPH, a membrane-associated phosphatidic acid-selective phospholipase A1a, can produce LPA (Lysophosphatidic acid) from PA (Phosphatidic acid) on the outer leaflet of the plasma membrane. It is well known that LIPH dysfunction contributes to lipid metabolism disorder. Previous study shows that LIPH was found to be a potential gene related to poor prognosis with pancreatic ductal adenocarcinoma (PDAC). However, the biological functions of LIPH in PDAC remain unclear. METHODS: Cell viability assays were used to evaluate whether LIPH affected cell proliferation. RNA sequencing and immunoprecipitation showed that LIPH participates in tumor glycolysis by stimulating LPA/LPAR axis and maintaining aldolase A (ALDOA) stability in the cytosol. Subcutaneous, orthotopic xenograft models and patient-derived xenograft PDAC model were used to evaluate a newly developed Gemcitabine-based therapy. RESULTS: LIPH was significantly upregulated in PDAC and was related to later pathological stage and poor prognosis. LIPH downregulation in PDAC cells inhibited colony formation and proliferation. Mechanistically, LIPH triggered PI3K/AKT/HIF1A signaling via LPA/LPAR axis. LIPH also promoted glycolysis and de novo synthesis of glycerolipids by maintaining ALDOA stability in the cytosol. Xenograft models show that PDAC with high LIPH expression levels was sensitive to gemcitabine/ki16425/aldometanib therapy without causing discernible side effects. CONCLUSION: LIPH directly bridges PDAC cells and tumor microenvironment to facilitate aberrant aerobic glycolysis via activating LPA/LPAR axis and maintaining ALDOA stability, which provides an actionable gemcitabine-based combination therapy with limited side effects.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Gencitabina , Proliferação de Células , Glicólise , Fenótipo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Neoplasias Pancreáticas
16.
Cancer Biol Ther ; 24(1): 2287128, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38010897

RESUMO

Radioresistance is the major obstacle that affects the efficacy of radiotherapy which is an important treatment for cervical cancer. By analyzing the databases, we found that aldolase A (ALDOA), which is a key enzyme in metabolic reprogramming, has a higher expression in cervical cancer patients and is associated with poor prognosis. We detected the expression of ALDOA in the constructed cervical cancer radioresistance (RR) cells by repetitive irradiation and found that it was upregulated compared to the control cells. Functional assays were conducted and the results showed that the knockdown of ALDOA in cervical cancer RR cells inhibited the proliferation, migration, and clonogenic abilities by regulating the cell glycolysis. In addition, downregulation of ALDOA enhanced radiation-induced apoptosis and DNA damage by causing G2/M phase arrest and further promoted radiosensitivity of cervical cancer cells. The functions of ALDOA in regulating tumor radiosensitivity were also verified by the mouse tumor transplantation model in vivo. Therefore, our study provides new insights into the functions of ALDOA in regulating the efficacy of radiotherapy and indicates that ALDOA might be a promising target for enhancing radiosensitivity in treating cervical cancer patients.


Assuntos
Frutose-Bifosfato Aldolase , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Dano ao DNA , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise , Tolerância a Radiação/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia
17.
Nutrients ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37892451

RESUMO

Excessive intake of sugar, and particularly fructose, is closely associated with the development and progression of metabolic syndrome in humans and animal models. However, genetic disorders in fructose metabolism have very different consequences. While the deficiency of fructokinase, the first enzyme involved in fructose metabolism, is benign and somewhat desirable, missense mutations in the second enzyme, aldolase B, causes a very dramatic and sometimes lethal condition known as hereditary fructose intolerance (HFI). To date, there is no cure for HFI, and treatment is limited to avoiding fructose and sugar. Because of this, for subjects with HFI, glucose is their sole source of carbohydrates in the diet. However, clinical symptoms still occur, suggesting that either low amounts of fructose are still being consumed or, alternatively, fructose is being produced endogenously in the body. Here, we demonstrate that as a consequence of consuming high glycemic foods, the polyol pathway, a metabolic route in which fructose is produced from glucose, is activated, triggering a deleterious mechanism whereby glucose, sorbitol and alcohol induce severe liver disease and growth retardation in aldolase B knockout mice. We show that generically and pharmacologically blocking this pathway significantly improves metabolic dysfunction and thriving and increases the tolerance of aldolase B knockout mice to dietary triggers of endogenous fructose production.


Assuntos
Doenças do Sistema Digestório , Intolerância à Frutose , Hepatopatias , Humanos , Animais , Camundongos , Intolerância à Frutose/genética , Intolerância à Frutose/diagnóstico , Frutose/metabolismo , Frutose-Bifosfato Aldolase/genética , Glucose/uso terapêutico , Camundongos Knockout
18.
Cell Death Dis ; 14(10): 660, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816733

RESUMO

Colorectal cancer (CRC) is a prevalent malignancy worldwide and is associated with a high mortality rate. Changes in bioenergy metabolism, such as the Warburg effect, are often observed in CRC. Aldolase B (ALDOB) has been identified as a potential regulator of these changes, but its exact role in CRC cell behavior and bioenergetic homeostasis is not fully understood. To investigate this, two cohorts of CRC patients were analyzed independently. The results showed that higher ALDOB expression was linked to unfavorable prognosis, increased circulating carcinoembryonic antigen (CEA) levels, and altered bioenergetics in CRC. Further analysis using cell-based assays demonstrated that ALDOB promoted cell proliferation, chemoresistance, and increased expression of CEA in CRC cells. The activation of pyruvate dehydrogenase kinase-1 (PDK1) by ALDOB-induced lactagenesis and secretion, which in turn mediated the effects on CEA expression. Secreted lactate was found to enhance lactate dehydrogenase B (LDHB) expression in adjacent cells and to be a crucial modulator of ALDOB-mediated phenotypes. Additionally, the effect of ALDOB on CEA expression was downstream of the bioenergetic changes mediated by secreted lactate. The study also identified CEA cell adhesion molecule-6 (CEACAM6) as a downstream effector of ALDOB that controlled CRC cell proliferation and chemoresistance. Notably, CEACAM6 activation was shown to enhance protein stability through lysine lactylation, downstream of ALDOB-mediated lactagenesis. The ALDOB/PDK1/lactate/CEACAM6 axis plays an essential role in CRC cell behavior and bioenergetic homeostasis, providing new insights into the involvement of CEACAM6 in CRC and the Warburg effect. These findings may lead to the development of new treatment strategies for CRC patients.


Assuntos
Neoplasias Colorretais , Frutose-Bifosfato Aldolase , Humanos , Frutose-Bifosfato Aldolase/metabolismo , Antígeno Carcinoembrionário , Resistencia a Medicamentos Antineoplásicos , Moléculas de Adesão Celular , Neoplasias Colorretais/patologia , Lactatos , Linhagem Celular Tumoral , Antígenos CD/genética , Proteínas Ligadas por GPI
19.
J Biol Chem ; 299(11): 105338, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838169

RESUMO

Sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is a sulfosugar that is the anionic head group of plant, algal, and cyanobacterial sulfolipids: sulfoquinovosyl diacylglycerols. SQ is produced within photosynthetic tissues, forms a major terrestrial reservoir of biosulfur, and is an important species within the biogeochemical sulfur cycle. A major pathway for SQ breakdown is the sulfoglycolytic Embden-Meyerhof-Parnas pathway, which involves cleavage of the 6-carbon chain of the intermediate sulfofructose-1-phosphate (SFP) into dihydroxyacetone and sulfolactaldehyde, catalyzed by class I or II SFP aldolases. While the molecular basis of catalysis is understood for class I SFP aldolases, comparatively little is known about class II SFP aldolases. Here, we report the molecular architecture and biochemical basis of catalysis of two metal-dependent class II SFP aldolases from Hafnia paralvei and Yersinia aldovae. 3D X-ray structures of complexes with substrate SFP and product dihydroxyacetone phosphate reveal a dimer-of-dimers (tetrameric) assembly, the sulfonate-binding pocket, two metal-binding sites, and flexible loops that are implicated in catalysis. Both enzymes were metal-dependent and exhibited high KM values for SFP, consistent with their role in a unidirectional nutrient acquisition pathway. Bioinformatic analysis identified a range of sulfoglycolytic Embden-Meyerhof-Parnas gene clusters containing class I/II SFP aldolases. The class I and II SFP aldolases have mututally exclusive occurrence within Actinobacteria and Firmicutes phyla, respectively, while both classes of enzyme occur within Proteobacteria. This work emphasizes the importance of SQ as a nutrient for diverse bacterial phyla and the different chemical strategies they use to harvest carbon from this sulfosugar.


Assuntos
Aldeído Liases , Frutose-Bifosfato Aldolase , Aldeído Liases/química , Carbono , Frutose-Bifosfato Aldolase/química , Metais , Fosfatos
20.
Biotechnol Lett ; 45(11-12): 1521-1528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688676

RESUMO

N­Acetyl­D­neuraminic acid (Neu5Ac) is the crucial compound for the chemical synthesis of antiflu medicine Zanamivir. Chemoenzymatic synthesis of Neu5Ac involves N-acetyl-D-glucosamine 2-epimerase (AGE)-catalyzed epimerization of N-acetyl-D-glucosamine (GlcNAc) to N-acetyl-D-mannosamine (ManNAc), and aldolase-catalyzed condensation between ManNAc and pyruvate. Host optimization plays an important role in the whole-cell biotransformation of value-added compounds. In this study, via single-plasmid biotransformation system, we showed that the AGE gene BT0453, cloned from human gut microorganism Bacteroides thetaiotaomicron VPI-5482, showed the highest biotransformation yield among the AGE genes tested; and there is no clear Neu5Ac yield difference between the BT0453 coupled with one aldolase coding nanA gene and two nanA genes. Next, Escherichia coli chromosomal genes involved in substrate degradation, product exportation and pH change were deleted via recombineering and CRISPR/Cas9. With the final E. coli BL21(DE3) ΔnanA Δnag ΔpoxB as host, a significant 16.5% yield improvement was obtained. Furthermore, precursor (pyruvate) feeding resulted in 3.2% yield improvement, reaching 66.8% molar biotransformation. The result highlights the importance of host optimization, and set the stage for further metabolic engineering of whole-cell biotransformation of Neu5Ac.


Assuntos
Aldeído Liases , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Aldeído Liases/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Ácido Pirúvico/metabolismo , Biotransformação , Ácido N-Acetilneuramínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...